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A B S T R A C T

The Northeastern U.S. has the ideal location and unique opportunity to be a leader in cold water marine

finfish aquaculture. However, problems and regulations on environmental issues, mandatory stocking of

100% native North American salmon, and disease have impacted economic viability of the U.S. salmon

industry. In response to these problems, the USDA ARS developed the National Cold Water Marine

Aquaculture Center (NCWMAC) in Franklin, Maine. The NCWMAC is adjacent to the University of Maine

Center for Cooperative Aquaculture Research on the shore of Taunton Bay and shares essential

infrastructure to maximize efficiency. Facilities are used to conduct research on Atlantic salmon and other

cold water marine finfish species. The initial research focus for the Franklin location is to develop a

comprehensive Atlantic salmon breeding program from native North American fish stocks leading to the

development and release of genetically improved salmon to commercial producers. The Franklin location

has unique ground water resources to supply freshwater, brackish water, salt water or filtered seawater to

fish culture tanks. Research facilities include office space, primary and secondary hygiene rooms, and

research tank bays for culturing 200+ Atlantic salmon families with incubation, parr, smolt, on-grow, and

broodstock tanks. Tank sizes are 0.14 m3 for parr, 9 m3 for smolts, and 36, 46 and 90 m3 for subadults and

broodfish. Culture tanks are equipped with recirculating systems utilizing biological (fluidized sand)

filtration, carbon dioxide stripping, supplemental oxygenation and ozonation, and ultraviolet sterilization.

Water from the research facility discharges into a wastewater treatment building and passes through

micro-screen drum filtration, an inclined traveling belt screen to exclude all eggs or fish from the discharge,

and UV irradiation to disinfect the water. The facility was completed in June 2007, and all water used in the

facility has been from groundwater sources. Mean facility discharge has been approximately 0.50 m3/min

(130 gpm). The facility was designed for stocking densities of 20–47 kg/m3 and a maximum biomass of

26,000 kg. The maximum system density obtained from June 2007 through January 2008 has approached

40 kg/m3, maximum facility biomass was 11,021 kg, water exchange rates have typically been 2–3% of the

recirculating system flow rate, and tank temperatures have ranged from a high of 15.4 8C in July to a low of

6.6 8C in January 2008 without supplemental heating or cooling.
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1. Introduction

The National Cold Water Marine Aquaculture Center
(NCWMAC) is a new research facility established by the USDA
ARS to improve the efficiency and sustainability of cold water
marine finfish farming. The initial focus of center research in
Franklin (i.e., the basis for this facility’s design) is to develop an
Atlantic salmon breeding program that will improve fish growth
and other economically important traits in stocks that are entirely
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composed of North American germplasm. Research objectives are
to utilize a family-based selective breeding program to developed
improved North American Atlantic salmon lines for U.S. producers
and consumers. Production modeling and bioplan for the Franklin
facility were completed in 2004 and the final design of the
aquaculture systems was completed in 2005. Construction began
in Franklin in May 2006 and was completed by May 2007.

1.1. Design constraints

The facility was designed to meet strict biosecurity standards
for raising Atlantic salmon from eggs to 4-year-old fish while
maintaining separate fish culture systems for separate year classes,
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Fig. 1. Aerial view of the USDA ARS National Cold Water Marine Aquaculture Center in Franklin, Maine. The center is adjacent to the University of Maine’s Center for

Cooperative Aquaculture Research and is supplied with water from freshwater, brackish water (1–2 ppt), salty well water (�15 ppt), and seawater.
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plus provide additional small-scale research tank bay space for
flexible use. The Franklin research site had a disinfected and
filtered surface seawater intake from Taunton Bay, but only limited
well water supplies, which would force selection of water
recirculation technologies for fish production when anything less
than full-strength seawater was required (Fig. 1). However,
different wells on-site provided a range of salinities, which, when
used with chilled recirculating systems, could be used to meet the
bioplan requirement for production systems with varying sali-
nities (i.e., 0–35 ppt) and temperatures (i.e., 4–15 8C). The
recirculating systems had to be extremely reliable, compact, and
relatively simple to operate, and also maintain exceptional water
quality that would be required to produce a healthy 4-year-old
salmon broodstock. The facility also has a 650 kW on-site diesel
generator to provide electrical power during commercial power
interruptions. In addition, all effluent had to be filtered, disinfected,
Table 1
Description of fish culture systems, i.e., number of tanks, tank volumes, area of culture t

Atlantic salmon in the breeding program at the USDA ARS National Cold Water Marine

Culture system Tanks (#) Indiv. tank

size (m3)

Total tank

volume (m3)

Pump

sump

Parr 234 0.14 33 9.0

Smolt 1 3 9 27 7.2

Smolt 2 3 9 27 7.2

On-grow 4 36 144 22.6

3 years broodstock 1 4 46 184 22.6

3 years broodstock 2 4 46 184 22.6

4 years broodstock 1 90 90 13.3

Total 253 689 104.5

a Excluding adjacent areas that are used for fish feed storage, general storage, waste
and provided with fish exclusion before discharge to Taunton Bay.
Total project budget for the main research building, two separate
research tank buildings for isolation research, the effluent building,
well water supply lines, and the discharge pipe was approximately
$13 million for design and construction.

1.2. Aquaculture system designs

The principal USDA research building is approximately 3700 m2

(40,000 ft2) and includes offices, two analytical laboratories,
primary and secondary hygiene rooms, two research tank bays,
and eight separate fish culture systems for egg incubation, parr
culture, smolt culture, 2nd year on-grow, and 3- and 4-year-old
broodstock culture (Tables 1 and 2, plus Fig. 2). The facility can
culture 224 salmon families in 0.1-m3 parr tanks, six 9-m3 smolt
tanks, four 36-m3 (2nd year) on-grow tanks, eight 46-m3 (3rd year)
ank room, and area of associated water treatment room that are used for culturing

Aquaculture Center in Franklin, Maine.

(m3)

Biofilter/LHO

volume (m3)

Culture tank

room areaa (m2)

Associated water treatment

room area (m2)

13.2 290 64

13.7 78 70

13.7 78 66

42.7 310 98

42.7 310 100

42.7 310 120

32.2 190 100

201.1 1560 620

removal, laboratory work, and hygiene.



Table 2
Description of the design recycle flow rates, makeup flow rates, design feeding rates, predicted maximum biomass, and maximum cumulative feed burden in all systems used

for culturing Atlantic salmon in the breeding program at the USDA ARS National Cold Water Marine Aquaculture Center in Franklin, Maine.

Culture system Predicted maximum

biomass (kg/m3)

Design recirculation

flow rate (l/min)

Makeup water required

at 2.5% of flow (l/min)

Predicted maximum

feeding rate (kg/day)

Cumulative feed

burdenc (mg/l)

Parr 1320 1,250 31 17 380

Smolt 1 1100 870 22 45 1420

Smolt 2 1100 870 22 45 1420

On-grow 5760 4,470a 112 101 626

3 years broodstock 1 7360 4,470a 112 165 1020

3 years broodstock 2 7360 4,470a 112 165 1020

4 years broodstock 3600 2,230 56 26 320

Total NAb 18,630 467 NAb NAb

a Actual flow during this period was restricted to approximately 50% of the design flow (to conserve energy), because some tanks in each system were not fully loaded.

However, all systems are operated at their design flow when the culture tanks are all fully loaded.
b All systems do not achieve maximum feeding rate or maximum biomass at the same time, so totalizing each maximum is not relevant.
c Daily maximum expected feeding rate divided by makeup water flow rate.
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and one 90-m3 (4th year) broodfish tanks. Fish culture tanks used
in the salmon breeding program are equipped with recirculating
systems that range in size from 780 to 4470 l/min (Figs. 3–5).
Criteria used to design the water treatment components and
culture tanks in each recycle systems are presented in Tables 2 and
3. These recycle systems typically utilize dual-drain culture tanks
(except in the parr system) and radial flow settlers to treat the
bottom-center drain exiting each culture tank (except in the parr
Fig. 2. Plan view drawing of the principal USDA research building includes shows offices, t

bays, and eight separate fish culture systems for egg incubation, parr culture, smolt cu
system) and then a centralized system containing micro-screen
filtration, biological (fluidized sand) filtration, carbon dioxide
stripping, supplemental low head oxygenation, ozonation, and
ultraviolet sterilization (only in the parr and smolt systems) to
treat the entire recirculating flow before it is returned to the
culture tanks (Figs. 3–5). A process flow drawing for one of 3rd year
broodstock systems is provided (Fig. 5); it is representative of the
process flow paths used in the other systems. Dual-drain circular
wo analytical laboratories, primary and secondary hygiene rooms, two research tank

lture, 2nd year on-grow, and 3- and 4-year-old broodstock culture.



Fig. 3. Diagrammatic representation of water flow and water treatment components (excluding drum filter and radial flow settlers) of a typical recirculating filtration system

used at the USDA ARS National Cold Water Marine Aquaculture Center in Franklin, Maine.

Fig. 4. Diagrammatic representation of the dual-drain circular culture tanks in a typical recirculating filtration system used at the USDA ARS National Cold Water Marine

Aquaculture Center in Franklin, Maine; water exiting the bottom-center drain of the culture tank (1) is first treated across a radial flow settler (2) before the flow is piped,

along with the flow exiting the tank sidewall drain, to the micro-screen drum filter (3).
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tanks were flushed at a mean hydraulic exchange rate of 26 min
(parr tanks) to 41 min (3- and 4-year-old broodstock tanks) and a
bottom center drain flow of 6–10 l/min per m2 plan area (Davidson
and Summerfelt, 2004). Flow injection manifolds were built into
the culture tank walls to allow staff to adjust water rotational
velocities by capping or uncapping nozzle inlets. Radial flow
settlers treating the water exiting the bottom-center drain (Fig. 4)
were sized at a surface loading rate of approximately 0.0031 m3/s
of flow per square meter of settling area (4.6 gpm/ft2; Davidson
and Summerfelt, 2005). The cone base of each settler (Fig. 4) was
manually flushed once daily (to the solids thickening belt filter in
the effluent treatment building) and no flow was discharged from
Fig. 5. Process flow drawing of one of the 3rd year broodstock systems at the US
the bottom of the cone during normal operation. CyclobioTM

fluidized sand biofilters (Fig. 3; Summerfelt, 2006) were sized to
treat from 50% to 80% of the total recirculating flow using relatively
fine silica filter sand (0.18 mm effective size) that expanded 60–
100% (before biofilm establishes) at a superficial velocity of
0.76 cm/s. All of the recirculating flow passed through forced-
ventilated cascade aeration columns (Fig. 3) contained 0.6 m depth
of 5 cm diameter random plastic packing and were hydraulically
loaded at approximately 0.02 m3/s per m2 plan area (30 gpm/ft2)
with an air:water loading of at least 10:1 (Summerfelt et al., 2000).
The stripping columns were stacked above low head oxygenation
units (Fig. 3) that were hydraulically loaded at approximately
DA ARS National Cold Water Marine Aquaculture Center in Franklin, Maine.



Table 3
Criteria used to design the water treatment components and culture tanks in each recycle systems.

Parameter or criteria Value

Culture tanks

Max. culture tank inlet oxygen conc. 16 mg/l (parr, on-grow, brood) to 19 mg/l (smolt)

Mean culture tank outlet oxygen conc. 10 mg/l

Culture tank exchange rate 25 min (parr, smolt) to 40 min (on-grow, brood)

Critical features All fiberglass construction; dual-drain design (all but parr tanks); flow inlet manifold integrated into tank wall

Radial flow settlers

Size of sieve panel openings 0.0031 m3/s per m2 plan area (4.6 gpm/ft2)

Angle between sediment cone and skirt 458
Critical features All fiberglass construction; cylinder at tank center dampens turbulence and directs inlet flow; v-notch collection

launder about top perimeter

Drum filters

Size of sieve panel openings 60 mm

Critical features Inlet and outlet overflow weirs; automatic backwash on according to drum filter water level;

all stainless or plastic construction

Fluidized-sand biofilters

Sand size (mean equivalent diameter) 0.18 mm

Uniformity coefficient of sand �1.7

Superficial velocity (hydraulic loading) 0.76 cm/s; clean sand expansion 50–100%

Initial unexpanded sand depth 2.0 m (after fines have been flushed)

Critical features CycloBio units; all fiberglass construction; v-notch collection launder about top perimeter

Cascade aeration/stripping columns

Packing type 5-cm diameter plastic random packing

Packing depth 0.8 m

Volumetric gas to liquid ratio (G:L) �10:1

Hydraulic loading rate 0.02 m3/s per m2 plan area (30 gpm/ft2)

Critical features All fiberglass and plastic construction; forced ventilated; nozzle plate distributes flow; water enters via channel

from biofilter and sidebox port from pumps; water exits down onto deflector plate above LHO;

demisting chamber at air outlet

Low head oxygenation units

Water level above orifice plate 20 cm

Cascade height 46 cm (elevation between orifice plate and water level below)

Submergence depth 76 cm (elevation between water level and bottom of LHO)

Hydraulic loading rate 0.034 m3/s per m2 plan area (50 gpm/ft2)

Critical features All fiberglass construction (ozone resistant resin); deflector plate between LHO and stripper directs inlet water

to perimeter of LHO orifice plate

Ozonation

Dosing rate 0.015–0.025 kg ozone per 1 kg feed fed

Critical features O3 generated in pure O2 feed gas before gas is transferred at each LHO; ozone dose controlled via ORP

UV irradiation units (tube and shell)

UV dose 50 mW s/cm2 @ end of lamp life and 90% UVT

Critical features Designed for low headloss; only installed in parr and smolt systems
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0.034 m3/s per m2 plan area (50 gpm/ft2; Summerfelt, 2003).
Ozone was generated in the oxygen feed gas before it was supplied
to each low head oxygenator (Summerfelt, 2003) and dose was
controlled manually and sometimes using oxidative reduction
potential (set-point of 350 mV) measured just before water returns
to the culture tank (Summerfelt et al., 2009). Ozone dose is
supplied at approximately 15–25 g per kilogram feed. Approxi-
mately 1 m of head was used to return the water from the sump
beneath the low head oxygenation unit, through UV irradiation
units (in the parr and smolt systems, but not in the larger recycle
systems), and back to the culture tanks (Fig. 3). UV irradiation units
were sized to treat the required flow rate for each system at a
dosage level of 50,000 mW s/cm2at the end of lamp life), assuming
90% transmittance of UV through a 1-cm long path of water. Excess
water flow in the low head oxygenation unit’s sump was by-passed
back to the pump sump, through the drum filter. Most systems also
include chilling units to individually adjust water temperature to
meet biological requirements. Recirculating systems have water
quality instrumentation to monitor and alarm temperature,
oxygen, and oxidation–reduction potential (ORP/ozone) levels.
Temperature and oxygen levels are provided to a computerized
feed control system that dispenses feed from robots traveling on
rails above culture tanks or individual tank feeders.
Four different water sources are supplied to the fish culture
systems and two research tank bays to provide the most flexibility
meeting the requirements of the bioplan and a dynamic research
program. Water can be supplied to fish culture tanks from filtered
and UV treated seawater from adjacent Taunton Bay, fresh well
water (0 ppt), low salinity brackish well water (�2 ppt), and higher
salinity brackish well water (12–14 ppt). Typical ground water
temperature is a constant 8–9 8C. However, before entering the fish
culture facilities, the higher salinity brackish well water is treated
across a cooling tower (located above a small reservoir tank) to
evaporative cool this water supply when dew point temperatures
are especially low in late fall, all winter, and early spring and also
warm the well water during the summer. Makeup water to each
system is typically about 2.5% of the recirculation flow rate and is
monitored using a turbine flow meter connected to the computer
controlling the feeding system.

Overflow water from all of the fish culture systems is collected
and piped through an effluent treatment building where it is
treated using micro-screen drum filtration to remove particulates,
inclined traveling belt filtration to exclude all eggs or fish, and UV
irradiation to disinfect the water before it is discharged to adjacent
Taunton Bay (Figs. 6 and 7). In a parallel treatment path, biosolids
contained in the facility’s micro-screen drum filters and particle



Fig. 6. Diagram (profile view) of the effluent treatment building processes used to treat all water overflowing or flushed from the fish culture systems; water is treated using

micro-screen drum filtration to remove particulates, inclined traveling belt filtration to exclude all eggs or fish, and UV irradiation to disinfect the water before it is discharged

to adjacent Taunton Bay.

Fig. 7. Process flow drawing of the effluent treatment processes used at the USDA ARS National Cold Water Marine Aquaculture Center in Franklin, Maine.
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Fig. 8. Feeding rates used at the USDA ARS National Cold Water Marine Aquaculture Center in Franklin, Maine based on fish size and water temperatures.
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trap backwash are captured and thickened across an inclined belt
filter, after which the biosolids are held in a slurry storage tank
until disposal (Fig. 7).

2. Methods

2.1. Fish culture

Stocking and culture of Atlantic salmon in the different fish
culture systems is based on life stage and separation of year
classes. The incubation system is for eggs and fry before first
feeding (October–February), the parr system is for first feeding fry
to 30–40 g salmon (March–December), the smolt system is for 30–
40 to 100 g salmon (January–May), the on-grow system is for 100 g
to 1.0 kg salmon in their 2nd year (May–May), the 3-year-old
broodstock system is for 1.0–3.0 kg salmon (June–May), and the 4-
year-old broodstock system is for growing salmon to 3.0–6.0 kg
from June until October when they will be spawned.

Up to 224 families of Atlantic salmon with 300–500 eggs/family
are held in the incubation system. Approximately 150–250 fish per
family have been raised through parr size. Typically 30–40 smolts
per family are maintained in smolt tanks and on-grown through
their 2nd year of age (reaching approximately 1.0 kg/fish).
Additional smolts are cultured for stocking into industry colla-
borator net pens for performance evaluations and additional
research studies. These 30–40 fish per family are reared to the end
of their 3rd year and a size of approximately 3.0 kg (possibly
smaller). Selection of 4-year-old fish for spawning is based on
calculation of estimated breeding values from net pen perfor-
mance evaluations. Breeding values are an estimate of the ability of
Table 4
Actual fish numbers, stocking weight, final weight, maximum biomass, maximum density

and recirculating water flow loading for each of the systems used to culture Atlantic sal

Maine from June 2007 through January 2008.

System Fish/age Fish

(n)

Stocking

weight (g)

Final

weight

(g)

Maximum

biomass

(kg)

Parr YC2006 <1 year 18,400 0.1 40 736

Smolt 1 YC2006 1 year+ 7,421 45 120 891

Smolt 2 YC2006 1 year+ 4,772 45 120 573

On-grow YC2005 2 years 2,683 185 1310 3515

3 years broodstock 1 YC2004 3 years 2,006 816 2179 4361

3 years broodstock 2 YC2003 4 years 493 2600 4941 2436

4 years broodstock YC2003 4 years 270 3500 4931 1332

a Density calculated from actual number of tanks stocked with fish.
b Daily feed rate divided by makeup water flow rate.
c Makeup water flow per unit biomass carried in each system.
d Recirculating water flow per unit biomass carried in each system.
an individual to produce superior offspring and are based on
measurements of performance, using phenotypic values, taken on
the animal itself or its relatives (the fish stocked into net pens).
Although additional traits of economic importance should and will
be considered in the future, growth or carcass weight are
considered to be of primary importance and are traits with major
impact on economic return. Selection or culling of broodfish occurs
when fish are moved from 3-year-old broodstock tanks into the 4-
year broodstock system prior to the spawning season.

Final stocking density, depending upon life-stage, limits the total
biomass that can be supported in each salmon rearing system. Using
an expected biomass of 40 kg/m3 of tank volume as the maximum
biomass in each fish culture system, approximately 1600 kg of parr,
2200 kg smolt, 5760 kg of 2nd year broodstock, 14,720 kg of 3rd year
broodstock, and 3600 kg of 4th year broodstock can be maintained in
the breeding program fish culture systems. Production systems are
stocked below maximum biomass and do not reach their maximum
biomass at exactly the same time. Fish are fed a commercially
available Atlantic salmon diet in multiple daily feedings using
computer software at a rate determined by fish size and temperature
(Fig. 8). The computer programs were developed from experimental
growth models validated from commercial data for various
environmental conditions and different genetic stocks (Ursin,
1967; From and Rasmussen, 1984; Ruohonen and Makinen, 1992:
Seppo Tossavainen, Arvotec, personal communication).

2.2. Water quality analyses

Total ammonia, nitrite, nitrate nitrogen, pH, CO2, and alkalinity
in the fish culture systems were measured weekly from water
, maximum daily feeding rates, cumulative feed burden, makeup water flow loading,

mon at the USDA ARS National Cold Water Marine Aquaculture Center in Franklin,

Maximum

densitya

(kg/m3)

Max. feed

(kg/day)

Cumulative

feed burdenb

(mg/l)

Makeup flow

loadingc

(l/min per kg fish)

Recirc flow

loadingd

(l/min per kg fish)

39.0 9.2 177 0.049 1.7

32.9 8.9 213 0.033 0.98

21.2 5.7 136 0.051 1.5

32.5 12.2 90 0.027 0.64

23.7 18.0 108 0.027 0.51

17.7 9.0 54 0.048 0.92

14.8 4.1 49 0.044 1.7



Fig. 9. Changes in total ammonia-, nitrite-, and nitrate-nitrogen in grow-out and 3-year broodstock 1 systems from May through December 2007.
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samples taken from pump sumps. Dissolved oxygen, temperature,
salinity, and ORP were measured continuously with calibrated
probes (Point Four Systems, Coquitlam, BC, Canada). Total
ammonia, nitrite, nitrate nitrogen, alkalinity, and CO2 were
measured using chemical reagents (Hach Chemical, Loveland,
CO) and Hach DR850 spectrophotometer and pH meters.
Table 5
Minimum, maximum, and mean total ammonia-nitrogen (TAN), nitrite-nitrogen, nitrate,

broodfish 1 recirculating fish culture systems at the USDA ARS National Cold Water Mar

System TAN (mg/l) Nitrite (mg/l) Nitrate (mg/l)

Min Max Mean Min Max Mean Min Max Me

Parr 0.03 0.6 0.166 0.003 1.02 0.15 0.7 11.5 2.8

Smolt 1 0.04 0.16 0.08 0.003 0.01 0.01 0.5 3.0 1.6

Smolt 2 0.0 0.19 0.09 0.004 0.16 0.02 0.7 5.5 2.3

On-grow 0.01 1.44 0.315 0.005 1.20 0.14 0.4 4.9 2.8

Brood #1 0.03 2.28 0.467 0.003 2.83 0.34 0.8 6.4 3.3

a The dissolved CO2 was higher in the on-grow and 3-year-old broodstock systems dur

flow to conserve energy, i.e., only one of the two recirculating pumps in each system w
3. Results and performance

3.1. Recycle system loading and water quality

Actual fish numbers, stocking weight, final weight, maximum
biomass, maximum density, maximum daily feeding rates,
salinity, carbon dioxide (CO2), and makeup water flows in parr, on-grow, and 3-year

ine Aquaculture Center in Franklin, Maine from May 2007 through December 2007.

Salinity (ppt) CO2 (mg/l) Makeup flow (l/min)

an Min Max Mean Min Max Mean Min Max Mean

1 0.3 3.4 1.7 0.1 5.2 2.0 17 44 36

9 2.3 2.8 2.5 0.9 8.0 3.8 35 31 29

3 2.3 2.9 2.5 0.9 6.0 3.9 17 31 29

8 4.9 18 13.7 4.3 13.9a 8.6 70 123 94

4 0.2 18.2 13.2 0 9.7a 4.7 68 156 116

ing this period because flow had been restricted to approximately 50% of the design

as operated.
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cumulative feed burden, makeup water flow loading, and
recirculating water flow loading for each of the systems are
reported in Table 4.

Fish were moved into the new systems before nitrification
could be established in the biological filters due to tank space
limitations in temporary rearing facilities. Concentrations of total
ammonia-, nitrite-, and nitrate-nitrogen followed typical startup
patterns for fish stocked into new recirculating fish culture
systems (Timmons et al., 2002). Total ammonia nitrogen typically
increased and peaked during the first month after stocking, nitrite
nitrogen increased and peaked generally within 2 months, and
nitrate increased and stayed relatively constant within 3 months
(Fig. 9). During biofilter startup, technicians used makeup water
flows to manage maximum concentrations of toxic nitrogen
compounds.

The water quality maintained within each recirculating
system during the 1st year of operation was used as a metric
to judge system performance. Mean water quality parameters
(Table 5 and Figs. 9 and 10) were within the range of acceptable
levels for salmonid culture (Piper et al., 1982). In fact, mean total
ammonia nitrogen (<0.5 mg/l) concentrations were comparable
or less than what is encountered in flow-through systems.
Feeding rates (Table 4) were highest in the 3-year broodstock
system, where mean total ammonia and nitrite nitrogen
concentrations were 0.315 and 0.14 mg/l, respectively
(Table 5). These results were expected, as fine sand fluidized-
sand biofilters used in salmonid systems are known to maintain
high total ammonia nitrogen removal efficiencies and low nitrite
nitrogen concentrations (Summerfelt, 2006). In addition, the feed
loading on these water recirculating systems used for broodstock
development was relatively low (0.1–0.2 kg feed per m3 makeup
water) compared to more heavily stocked and fed grow-out
systems that can achieve 0.53 and 5.3 kg/m3 makeup water flow
for high and low makeup conditions (Davidson et al., in press).
When mean daily water temperatures had dropped to approxi-
mately 8 8C in December of 2007 (Fig. 10), these biofilters
continued to maintain total ammonia nitrogen and nitrite
nitrogen concentrations of approximately �0.1–0.2 mg/l. Similar
inorganic nitrogen concentrations (Fig. 11) and water tempera-
tures (not shown) were measured during November and
December 2008 and January 2009. Similar patterns were
measured in parr and on-grow fish culture systems, but at lower
Fig. 10. Variation in water temperature and dissolved oxygen in the on-grow fish culture

Maine from May through December 2007.
concentrations (not shown). Although makeup water supplied to
the fish culture systems was approximately 2.5% of the
recirculating flow rate and the well water temperatures were
8–9 8C, ambient air temperatures in the fish culture rooms
impacted tank temperatures. Water temperature and dissolved
oxygen levels fluctuated diurnally and seasonally (Fig. 10). Water
temperatures were highest in July and August where they peaked
at 13.8 8C and lowest in December at 5.5 8C (Fig. 10). Dissolved
oxygen levels were more stable and were generally maintained
above 8 ppm in the culture tanks.

Salinities in the fish culture system were stable and had limited
variation (Table 5) because makeup water came from groundwater
sources. The parr and smolt culture systems were supplied with
either freshwater or brackish water (range 0.3–3.4 ppt) while the
on-grow and broodstock systems were supplied with higher
salinity brackish water (0.3–18.2 ppt) except during the spawning
season when 4-year-old spawning broodfish were supplied with
freshwater.

Carbon dioxide varied with fish biomass in the different fish
culture systems and ranged from 0 to a maximum of 13.9 mg/l in
the on-grow system (Table 5). Average CO2 was usually much
lower and ranged from 1.95 mg/l in the parr system to 8.6 mg/l in
the on-grow system. Because some tanks in each on-grow and 3-
year broodstock system were not stocked during this period, the
recirculating flow in these systems was restricted by approxi-
mately 50% (i.e., only one of the two recycle pumps was operated
to conserve energy), which reduced the amount of flow by-
passing the fluidized sand biofilters and the flow passing through
the CO2 stripping column by 50%. Because flow was only 50% of
the design flow, water did not adequately cover the flow
distribution plate at the top of the stripping column and the
stripping fan was not operated. When fish loading increases in
these systems, recirculating flow will be increased to the design
flow and the fans used to ventilate these stripping columns will
be turned on, which will improve CO2 removal in these largest
systems.

Alkalinity was lower in systems utilizing freshwater than in
systems supplied with brackish water. Alkalinity ranged from a
low of 59 mg/l (as calcium carbonate) in parr to a high of 126 mg/lL
(as calcium carbonate) in on-grow and broodstock systems. The
mean alkalinity was typically near 100 mg/l (as calcium carbonate)
and no supplemental sources of alkalinity have been used.
system at the USDA ARS National Cold Water Marine Aquaculture Center in Franklin,



Fig. 11. Changes in total ammonia-, nitrite-, and nitrate-nitrogen in the 3-year broodstock 1 system from October 2008 through January 2009; monthly feed loading was 414,

490, and 512 kg, respectively, in November, December, and January.

Table 6
Water quality parameters measured in the effluent stream related to monthly fish biomass and feed at the USDA ARS National Cold Water Marine Aquaculture Center in

Franklin, Maine from June 2007 through December 2007.

Month Effluent

flow rate

(l/min)

Max fish

bio mass

(kg)

Total

feed/

month (kg)

Mean

BOD

(mg/l)

BOD

(kg/day)

Mean

TSS

(mg/l)

TSS

(kg/day)

Total

nitrogen

(mg/l)

Total

nitrogen

(kg/day)

Mass TSS/

unit feed

fed (kg/kg)

Mass BOD/

unit feed

fed (kg/kg)

Mass TN/

unit feed

fed (kg/kg)

Mean

salinity

(ppt)

June 435 8,929 1203 2.3 1.43 4.0 2.51 2.13 1.33 0.063 0.036 0.033 NAa

July 473 6,071 950 2.3 1.53 8.7 5.93 2.14 1.46 0.194 0.050 0.048 5.40

August 473 7,209 1200 3.0 2.04 4.8 3.27 2.22 1.51 0.084 0.053 0.039 10.90

September 491 9,718 1600 3.8 2.67 5.8 4.07 2.22 1.58 0.076 0.050 0.030 11.60

October 491 10,491 1250 3.0 2.12 4.0 2.83 2.52 1.79 0.070 0.053 0.044 10.70

November 491 14,666 1720 2.2 1.56 13.0 9.21 2.44 1.73 0.161 0.027 0.030 9.00

December 491 1,1007 772 2.5 1.75 5.6 3.97 2.70 1.92 0.159 0.070 0.077 9.10

MEAN 478 9,727 1242 2.73 1.87 6.56 4.54 2.34 1.62 0.115 0.048 0.043 9.45

a Salinity was not measured in the effluent stream in June 2007.
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Ozonation maintained excellent water clarity in all recirculat-
ing systems and low suspended solids levels, but these were not
quantified.

3.2. Effluent treatment system performance

Total suspended solids (TSS), total nitrogen (TN), and biological
oxygen (BOD) demand in the effluent were somewhat but not
strictly related to biomass and feeding rates (Table 6). Total
nitrogen (kg/day) discharged through in the effluent ranged from
1.33 kg/day in June 2007 to 1.92 kg/day in December 2007 with a
mean of 1.62 kg/day. The drum filters, biological filters, radial flow
clarifiers, and solids concentration filtration in the effluent
building were effective in reducing BOD, TSS, and TN in the
effluent discharge. The mean TSS concentration in the effluent
ranged from 2.51 kg/day in June 2007 to 9.21 kg/day in November
2007. The drum filters, radial flow clarifiers and effluent building
equipment removed (as waste biosolids) all but 11.5% of the
monthly mass of feed fed (Table 6). BOD in the effluent ranged from
1.43 kg/day in June 2007 to 2.67 kg/day in September 2007, which
was 4.8% of the mean monthly feed mass. If nitrogen composes
approximately 7% of the feed, then approximately 61% of the
nitrogen added through the feed on a mean monthly basis was
discharged in the effluent (Table 6).
3.3. Fish performance

In the spring of 2007, the parr, on-grow, and 3-year broodstock
systems were stocked using fish that had been cultured in temporary
facilities since December 2003. Fish growth was acceptable in the
different systems from June 2007 through January 2008 (Fig. 12).
Parr grew from 0.1 to 40 g, 2-year-old salmon from 185 to 1310 g,
and 3-year-old salmon from 816 to 2170, and 4-year-old salmon
from 2600 to 6947. Salmon cultured at the NCWMAC research
facility were smaller, but similar sized to salmon cultured at a
commercial land-based facility (Fig. 12). Because the NCWMAC is a
research facility with a focus on an Atlantic salmon breeding
program, fish size is not of critical importance. High densities
maintained in previous temporary rearing conditions and low
temperatures during the winter months impacted fish sizes during
this time period. Feeding rates were below predicted maximum
feeding rates, but are likely to approach design levels in the future as
fish numbers and biomass increase. The maximum amount of feed
per day has been 57.4 kg; however, design specifications allow that
up to 467 kg/day could be provided if fish culture systems were
stocked at maximum biomass. Computer controlled automatic
feeding systems have been efficient at providing feed and maintain
accurate records of fish numbers, biomass, and quantities of feed
used in the facility (Fig. 12).



Fig. 12. Typical weight (g) for Atlantic salmon cultured at the USDA ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, Maine (green line), similar

data obtained from a commercial Atlantic salmon hatchery in Maine (red line), and a net pen site in Maine (blue line) (Personal communication from David Miller and Greg

Lambert, Cooke Aquaculture, U.S.). Selection of superior broodfish typically occurs in year 3 of breeding program (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of the article.).
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4. Conclusions

Atlantic salmon cultured in the NCWMAC breeding program
grew well during the first 7–8 months of operation in the reuse
fish culture systems. The systems were operated at approximately
98% reuse (2% makeup water on the basis of flow rate). Water
quality in the fish culture systems was acceptable for Atlantic
salmon culture and was nearly the same as flow through culture
systems.

Several advantages for utilizing reuse fish culture systems were
evident for culturing Atlantic salmon. The Franklin location has
limited ground water so reuse systems are the only possible
technology for culturing the relatively large salmon biomass
required for the research program. The design of the effluent
system and characteristics wastewater flow from the facility
demonstrates better solids capture than flow through fish culture
systems. The use of groundwater, reuse culture technologies, and
effective biosecurity protocols has resulted in fish health
certification for the facility and fish stocks. No mortality events
or pathogens of regulatory concern have been reported on any fish
health checks. All fish stocks were screened biannually for five
viruses (IPNV, IHNV, ISAV, OMV, VHSV), along with Aeromonas
salmonicida, Yersinia ruckeri, Renibacterium salmoninarum,
Myxobolus cerebralis, and Ceratomyxa shasta. Water temperature
in the fish culture systems has been largely maintained by passive
heating or cooling of makeup water flowing through the well water
tower. No expensive supplemental heating or cooling has been
required.

The research objective focusing on the development of an
Atlantic salmon breeding program has been successful. The first
generation of salmon obtained in 2003 was performance evaluated
in industry net pens, captive broodfish were maintained at the
Franklin site in reuse systems, and the broodfish were spawned in
the fall of 2007. Approximately 500,000 unfertilized eggs from
selected broodfish were transferred to commercial producers and
consumers through a cooperative agreement with industry.
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